

Distance Hijacking Attacks on Distance Bounding Protocols

Cas Cremers ETH Zurich

Joint work with: Kasper Rasmussen, Benedikt Schmidt, Sidjan Capkun

Distance Bounding

Distance Bounding Protocols

- Objective: ensure proximity
- Protocol with two roles: Prover and Verifier
- Verifier obtains an upper bound on the distance to the prover
- Guarantee also holds if the prover is malicious

Distance bounding for network access

Brands and Chaum protocol (1993)

Threats considered in protocol proposals

Mafia Fraud

• External attacker modifies distance of honest prover

Distance Fraud

Dishonest prover modifies
 his own distance

Terrorist Fraud

Dishonest prover collaborates
 with closer attacker to modify his distance

What about other honest provers?

Distance Hijacking attack on B&C

Distance Hijacking

A **Distance Hijacking attack** is an attack in which a **dishonest prover P exploits** one or more **honest parties** to provide a verifier V with false information about the distance between P and V.

Scope

Protocol	DH-attack?
Brands and Chaum (Fiat-Shamir)	Yes
Brands and Chaum (Schnorr)	Yes
Brands and Chaum (signature)	Yes
Bussard and Bagga	-
CRCS	Yes
Hancke and Kuhn	-
Hitomi	-
KA2	-
Kuhn, Luecken, Tippenhauer	Yes
MAD	Yes
Meadows et al for F() = <nv,np p="" xor=""></nv,np>	Yes
Munilla and Peinado	-
Noise resilient MAD	Yes
Poulidor	-
Reid et al.	-
Swiss-knife	-
Tree	-
WSBC+DB	Yes
WSBC+DB Noent	Yes

About half of the investigated protocols vulnerable

- Brands and Chaum based designs usually vulnerable
- Hancke & Kuhn based designs seem okay

Fixing the problem

- Secure channel (TLS) does not help here
 - Cannot use cryptography during fast response
 - Protocols that use secure channels in the other phases may still be vulnerable
- Fixes logically bind fast response to other phases
 - Involve identity in response
 - Bind identity to nonce in Phase 1

Phase 1: Setup Phase 2 Fast response phase Phase 3: **Finalize**

• Fixes do not require additional cryptography

Formal model

- We extended Basin et al. [TPHOLs'09]
- Hybrid symbolic model
 - Also captures bit-level overshadowing attacks
 - adversary flips some bits of an unknown message
 - Formalization in Isabelle/HOL
- Used to show that our fixes prevent the found attacks

(Details in the paper; theory files publicly available)

Multiple protocols

Interaction between protocols with similar fast response hardware can lead to attacks

- Similar to "chosen protocol" or "multi-protocol" attacks"
- ALL protocols vulnerable

Are all attacks now covered?

Restructuring attacks on DB protocols

Assume an attack trace where V computes incorrect distance for P

A **Distance Hijacking attack** is an attack in which a **dishonest prover P exploits** one or more **honest parties** to provide a verifier V with false information about the distance between P and V.

Conclusions

- Many protocols vulnerable to Distance Hijacking
 - Fixes do not introduce significant overhead
 - Just-in-time: distance bounding implementations starting to be produced
- Distance Hijacking is a **relevant threat** in many cases
- Cannot afford to ignore multiple provers/verifiers during analysis
- Interaction between different
 DB-protocols still possible...

